If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14y^2-13y=0
a = 14; b = -13; c = 0;
Δ = b2-4ac
Δ = -132-4·14·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-13}{2*14}=\frac{0}{28} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+13}{2*14}=\frac{26}{28} =13/14 $
| (-9)-x=12 | | -3(-2x+5)-2x+4=8-7(4x-1) | | n-1/3=5/8 | | Y=x/200+10 | | X+4/3-x-4/6=1/6 | | n-1-3=5-8 | | 9x=12x-3 | | 2y^2+3y-54=0 | | 2n^2+n-16=0 | | 3n+4-5n=-16 | | 1.5x+9=14.7 | | 3x+9x+8=2(6x | | 3n+4-4n=-16 | | (x)(x)(2x-60)=60 | | 11^-x+10=17^-8x | | (x)(x)(2x-60)=6- | | 3y/y-9+1=7y/y-9 | | 4x=14x-x | | M=7m-6 | | n-7/10=-6/4 | | 3(x-(-5))=21 | | 8x+26=-2 | | 1.2x+2/0.4=-5 | | 19=30x | | 7m+30=-42 | | 5w+24=9 | | t+9=22 | | 36+n=360 | | X-9=4x+4 | | 3x-(4x+3)=3x-31 | | 1n-1/3=5/8 | | -4(-4+7x=-40 |